Desorption of arsenic from clay and humic acid-coated clay by dissolved phosphate and silicate.
نویسندگان
چکیده
Arsenic (As) contaminated aquifers contain iron minerals and clays that strongly bind As at their surfaces. It was suggested that As mobilization is driven by natural organic matter (including fulvic acids (FA) and humic acids (HA)) present in the aquifers either via providing reducing equivalents for reductive dissolution of Fe(III) (hydr)oxides or via competitive desorption of As from the mineral surfaces. In the present study we quantified sorption of As(III) and As(V) to Ca(2+)-homoionized illite (IL) and to kaolinite (Kao) as well as to HA-coated clays, i.e., illite-HA (IL-HA) and kaolinite-HA (Kao-HA) at neutral pH. Clay-HA complexes sorbed 28-50% more As than clay-only systems upon addition of 100μM As(III)/As(V) to 0.5g of clay or HA-clay with Ca(2+) probably playing an important role for HA binding to the clay surface and As binding to the HA. When comparing sorption of As(V) and As(III) to clay and HA-clay complexes, As(V) sorption was generally higher by 15-32% than sorption of As(III) to the same complexes. IL and IL-HA sorbed 11-28% and 6-11% more As compared to Kao and Kao-HA, respectively. In a second step, we then followed desorption of As from Kao, Kao-HA, IL and IL-HA by 100 and 500μM phosphate or silicate both at high (0.41-0.77μmol As/g clay), and low (0.04 to 0.05μmol As/g clay) As loadings. Phosphate desorbed As to a larger extent than silicate regardless of the amount of As loaded to clay minerals, both in the presence and absence of HA, and both for illite and kaolinite. At high loadings of As, the desorption of both redox species of As from clay-HA complexes by phosphate/silicate ranged from 32 to 72% compared to 2-54% in clay only systems meaning that As was desorbed to a larger extent from HA-coated clays compared to clay only systems. When comparing As(III) desorption by phosphate/silicate to As(V) desorption in high As-loading systems, there was no clear trend for which As species is desorbed to a higher extent in the four clay systems meaning that both As species behave similarly regarding desorption from clay surfaces by phosphate/silicate. Similarly, no significant differences were found in high As-loading systems in the amount of As desorbed by phosphate/silicate when comparing Kao vs. IL and Kao-HA vs IL-HA systems meaning that both clay types behave similarly regarding desorption of As by phosphate/silicate. At low As loadings, up to 80% of As was desorbed by phosphate and silicate with no noticeable differences being observed between different As species, different types of clay, clay vs clay-HA or the type of desorbant (phosphate and silicate). The results of this study showed that HA sorption to Ca(2+)-homoionized clay minerals can increase As binding to the clay although the As sorbed to the clay-HA is also released to a greater extent by competing ions such as phosphate and silicate. Desorption of As depended on the initial loadings of As onto the clay/clay-HA. Based on our results, the effect of humic substances on sorption of As and on desorption of As by phosphate and silicate has to be considered in order to fully understand and evaluate the environmental behavior of As in natural environments.
منابع مشابه
تأثیر اسید هومیک بر جذب و واجذب روی
Humic substances are the most important organic fractions in soils and have affinity towards trace metals. In order to evaluate the effect of humic acid on zinc (Zn) sorption and desorption by soil, a batch experiment was conducted with two soil samples which were different in clay and calcium carbonate contents. Three levels of humic acid (0, 200, 500 mg/L) and various Zn concentrations (0 t...
متن کاملSorption of 2,4,6-trichlorophenol in model humic acid-clay systems.
Humic acids and clays are important soil components that influence the sorption and desorption of organic contaminants; however, it is unclear how humic acids influence the sorption of organic contaminants onto clays and their subsequent desorption. Sorption and desorption of 2,4,6-trichlorophenol (2,4,6-TCP) by and from humic acid-modified K(+)- and Ca(2+)-montmorillonite and -illite were comp...
متن کاملSorption of sulfonamide antimicrobial agents to humic acid-clay complexes.
The interaction of sulfonamide antimicrobial agents with smectite clay minerals and humic acid (HA)-clay complexes was investigated in batch experiments to assess the influence of adsorbed humic acid on sulfonamide sorption. Soil HA-clay complexes were produced at HA:clay ratios of 1:5, 1:50, and 1:100 (w/w). Vibrational and electronic spectroscopy indicated the preferential adsorption of polar...
متن کاملBioavailability of Labile and Desorption-resistant Phenanthrene Sorbed to Montmorillonite Clay Containing Humic Fractions
The biodegradation of 14C-labeled phenanthrene in the presence of particles of montmorillonite and fulvic and humic acid–montmorillonite complexes was studied in a batch system. A mathematical model that takes into account the contribution to mineralization by the slowly desorbing compound was used to calculate the initial mineralization rates. Sorption of phenanthrene to the particles was dete...
متن کاملSorption and Desorption of Pesticides by Clay Minerals and Humic Acid-Clay Complexes
small amounts of water to soil reduced the sorption of organic compounds relative to the sorption by the In soils, organic matter and minerals are often associated such that dehydrated soil in hexane, and that organic vapor adit is unclear how the presence of the former component influences sorption by soil was significantly depressed by increasing the sorptive properties of the latter one. In ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of contaminant hydrology
دوره 126 3-4 شماره
صفحات -
تاریخ انتشار 2011